IP67
RoHS PA
$+80^{\circ} \mid$
$-20^{\circ} \mathrm{C}$

Hinges
 with built-in safety switch SUPER-technopolymer

MATERIAL

Hinge body: self-extinguish high-rigidity SUPER-technopolymer, black or grey colour RAL 7040 (C33).
Rotation pin: glass-fibre reinforced polyamide-based tecnopolymer (PA), black or grey colour RAL 7040 (C33).
Assembly kit (see assembly instructions):
n4 technopolymer covers (fig.3).

- $n^{\circ} 4$ technopolymer bushings (fig. 4 and fig.5).
- $n^{\circ} 2$ thermoplastic elastomer safety plugs (fig.7) to guarantee IP67 protection class.
Switch: four slow action electrical contacts with double interruption Zb shaped (see IEC EN 60947-5-1) wich can be set in normally open (NO) or normally closed (NC) mode in production.
Positive opening in compliance with IEC EN 60947-5-1 annex K: the separation of the electrical contacts is the direct result of an actuator action on which an action force is applied by means of non elastic elements, that is to say not dependant on, for example, spring-like elements.
The contact elements guarantee a self-cleaning action of the silveralloy pastes.
Thanks to its housing made out of SUPER-technopolymer, the CFSW hinge guarantees the double insulation of the internal circuits, therefore there is no need of grounding connection. Furthermore, the housing protects the electric contacts from shocks, atmospheric agents and accidental penetration of tools.

STANDARD EXECUTIONS

CFSW. hinge must be mounted with the side containing the microswitch on the fixed part (frame structure) and the other side on the movable part (door). The executions shown below refer to the hinges with the micro-switch on the right side.
C-A: 8 pole male connector, top axial output.
C-C: 8 pole male connector, bottom axial output.
C-B: 8 pole male connector, back output.
F-A: 2 or 5 m cable, 8 conductors, top axial output.
F-C: 2 or 5 m cable, 8 conductors, bottom axial output.
F-B: 2 or 5 m cable, 8 conductors, back output.
FC-B: $0,2 \mathrm{~m}$ cable, with 8 pole male connector, back output.
Cable type: UL/CSA STYLE 25878 X AWG 22.
Contact blocks in the standard execution:
NO-NC-NO-NC: 2 NO contacts +2 NC contacts.
NO-NC-NC-NC: 1 NO contact + 3 NC contacts.

ELESA and GANTER models all rights reserved in accordance with the law.

ACCESSORIES ON REQUEST

- FC.M12x1: extensions with 8 pole M12 female axial connector. - PMW. (see page 1433): assembly plate on T-slot profiles.

SPECIAL EXECUTIONS ON REQUEST

- Operating angle of the hinge other than from 0° to 180°, every 15°, where the system frame/door requires a special execution.
NC and NO contact blocks setting (up to 4 NC).
- NO and NC ovelapping contacts.

ASSEMBLY INSTRUCTIONS

CFSW. hinge can be assembled in three different modes:

- With M6 UNI 5933 ISO 10642 countersunk-head screw (not supplied) and screw cover supplied in the kit (fig. 3) to avoid free access to screws.
- With cylindrical-head screw with hexagon socket M6 UNI 5931 ISO 4762 (not supplied) to set with the bushing supplied in the kit (fig.4).
- With M6 UNI 5588 ISO 4032 nut (not supplied) and the bushing supplied in the kit (fig.5). This kind of assembly makes the hinge totally tamper-proof preventing any tampering.
- Fit the hinge side with the built-in microswitch on the fixed part (the frame) and the other side on the door.
- Leave the least clearance between the holes in the mounting walls and the diameter of the setscrews (Max 0.5 mm). The suggested tightening torque should not be exceeded: 5 Nm .
The hinge must not be used as a mechanical end-stroke either for door maximum opening or for closed door. For this purpose we recommend using external mechanical stops to prevent the door from opening completely against the hinge body assembled on the frame (fig.1) or exceeding the angle where the two interconnected surfaces are on the same plane (fig.2).
CFSW. hinge is generally assembled with one or more complementary hinges CFMW. (on page 1434). In case of horizontal door opening or of a limited weight it is possible to use one hinge only.
- The connection cables must always be protected against mechanical damages.

CONTACTS AND CABLES

The built-in safety switch is available with 4 contacts which can be set in production in the normally closed NC or normally open NO mode.

- NC contact with positive opening is mainly used for safety applications. The use of more than one NC switches reduces the risk of error of the single commutation.
NO contact can be used simultaneously with the NC contact thanks to their electrical separation. The use of NO together with NC contacts guarantees a safety diversification.
- Cable with M12×1 connector following the shown circuit scheme.

ROTATION ANGLE (APPROXIMATE VALUE)

Max 180° (0° and $+180^{\circ}$ being 0° the condition where the two interconnected surfaces are on the same plane fig.1). The switching angle (see Built-in safety multiple switch functioning and maintenance) is guaranteed from this position. The condition where the two interconnected surfaces are on the same plane is to be strictly verified because the hinge must not be stressed by any negative angle (fig. 2).

Fig. 1

Fig. 3
Fig. 4

Drilling template

Category of usage (values approved by IMQ)		CFSW-C.. (connector)	CFSW-F.. (cable)
AC15 standard\| IEC 60947-5-1 Typical applications: electromagnetic load controls in alternating current	24 V	-	4 A
	120 V	-	4 A
	250 V	-	4 A
	400 V	-	4 A
DC13 standard IEC 60947-5-2 Typical applications: electromagnet controls in direct current	24 V	2 A	2 A
	125 V	-	0.4 A
	250 V	-	0.3 A

Remark: the category of usage AC 152 A 24 V may be applied to CFSW-C... even though this category is not certified by IMQ, since it is not provided for the standards in use.

BUILT-IN SAFETY MULTIPLE SWITCH FUNCTIONING AND

MAINTENANCE

- The operating angle (see travel diagram) is set at 5° (we suggest to check it according to UNI EN ISO 13857).
- To guarantee the safety protection function, the hinge must be able to turn at least by 11° (see travel diagram), equivalent to the forced opening of the NC contacts by the actuator (positive opening).
- The adjustment of the operating angle can be modified, in case of doors with large dimensions, till 1° of width before the start up of the hinge by means of a screwdriver turning the assembly screw clockwise (fig.6).
After the adjustment is done, the safety plug must be fit (not removable) to guarantee protection class IP67 (fig.7).
The functioning points shown in the travel diagram undergo the same variation as the operating angle (ex: operating angle 1°, positive operating angle 7°).
Under normal conditions of use, when the mechanical life of the device is over, the operating angle can get to 3° from the starting angle.
- We suggest to check prior to the start up and then periodically the proper functioning of the CFSW. hinge.
When the protection is opened the machine must immediately stop. When the protection is opened at any degrees, the machine must not be able to start.

WARNINGS

- The choice and use of CFSW. hinge is the responsibility of the customer who will check that the relevant application is compliant to the safety regulations in force in the actual operating conditions.
- Using CFSW. hinges always implies a full knowledge of and compliance with the safety regulations in force, including UNI EN ISO 13849-1, IEC EN 60204-1, UNI EN ISO 14119 and EN ISO 12100. The hinge must always be assembled and connected by qualified operators who have to check regularly the hinge perfect functioning.
- The hinge with built-in safety switch CFSW. must not be used in environments with frequent temperature changes which can cause condensation, in the presence of explosive or flammable gasses and must always be protected by a proper fuse (see Electrical features table).
- The structure of CFSW hinge must not be modified and the back cover has never to be removed: an improper installation or tampering of the hinge with built-in safety switch can make the protection ineffective and cause serious damages.
- During handling and storage the shown environmental conditions have to be observed.

Category of usage (values approved by UL)	CFSW-F-A CFSW-F-C CFSW-F-B (cable)			CFSW-C-A CFSW-C-C CFSW-C-B (connector)
C 300 AC control	120 V	1.5 A	Therm. current 2.5 A	$24 \mathrm{~V} / 2 \mathrm{~A}$ limited voltage- limited current
	240 V	0.75 A	250 V	0.55 A

Stroke diagram 2NO+2NC
Stroke diagram 1NO+3NC
(production setting)

The diagrams refer to the hinge with the operating angle set in production. The operating angle can be reduced (max. adjustment: 4°).

How to read the diagram

Mechanical features (values approved by IMQ)	Electrical features (values approved by IMQ)	
$\begin{aligned} & \text { Type of contacts: Ag } \\ & 999 \end{aligned}$	Thermic power Ith	Cable 4A
		Connector 2.5 A
Maximum working frequence: 600 cycles/hour *	Short-circuit protection: 4A500V gG	
Mechanical life-span (test carried in compliance with IEC EN 60947-5-1 regulation): 10^{6}	Seal voltage at nominal pulse	Cable 4 Kv
		Connector 2.5 Kv
	Insulation nominal UI voltage	Cable: 400 Vac
		Connector: 30 Vac/Vdc
Protection class of the housing EN60529: IP67 *	Minimum force (torque for positive opening of contact): 0.5 Nm	
Speed of operation: minimum $2^{\circ} / \mathrm{sec}$., maximum $90^{\circ} / \mathrm{sec}$.	Short circuit conditioned current: 1000 A	
	Pollution degree: 3	
	B10d $=2000000$	
	Tm = 20 years	

[^0]\longrightarrow

CFSW-C-A
CFSW-C-C

CFSW-C-B

CFSW-F-C
CFSW-F-B
CFSW-FC-B

Code	Description	Code	Description	$\begin{array}{lllll}\text { B } & \mathbf{f} \\ \mathbf{1}\end{array}$	h1 h2	$\begin{gathered} \mathrm{C} \mathrm{\#} \\ {[\mathrm{Nm}]} \\ \hline \end{gathered}$
426601	C	426601-C33	CF		15	25150
426602	CFS	426602-C33	CFSW.110-6-2NO+2NC-C-C-C33	$1106091 \pm 0.242 \pm 0.225$	1512	150
426603	CFSW.110-6-2NO+2NC-C-B	426603-C33	CFSW.110-6-2NO+2NC-C-B-C33	$1106091 \pm 0.242 \pm 0.225$	1512	5150
426611	CFS	426			,	5280
612	CFS	26612-C33	CFS	110	15126	528
613	CFSW.110-6-2NO+2NC-F-B-2	426613-C33	CFSW.110-6-2NO+2NC-F-B-2-C33	9110.242土0.2 25	15126.5	5280
42	CFSW	426615-C33	CFS	$1106091 \pm 0.242 \pm 0.225$	1512	5475
426616	CFSW. 11	6616-C33	CFSW. 1	$1106091 \pm 0.242 \pm$	15126.5	5
42	CFS	426617-C33	CFSW.110-6-2NO+2NC-F-B-5-C33	$1106091 \pm 0.242 \pm 0.225$	1512	
426619	CFSW. $110-6-2 \mathrm{NO}+2 \mathrm{NC-FC-B}$	426619-C33	CFSW.110-6-2NO+2NC-FC-B-C33	$1106091 \pm 0.242 \pm 0.225$	15126.5	$\begin{array}{llll}12 & 5 & 475\end{array}$
661	CFSW	6661-C33	CFSW.110-6-1NO+3NC-C-A-C33	60	1512	5
	CFSW	666	CFSW	10	15126.5	5
	CFSW.110-6-1NO+3NC-C-B	663-C33	CFSW.110-6-1NO+3NC-C-B-C33	$1106091 \pm 0.242 \pm 0.225$	15126.5	5
426671	CFSW.110-6-1NO+3NC-F-A-2	426671-C33	CFSW. $110-6-1$ NO +3 NC-F-A-2-C33	$1106091 \pm 0.242 \pm 0.225$	15126.5	5
426672	CFSW.110-6-1NO+3NC-F-C-2	26672-C3	CFSW.110-6-1NO+3NC-F-C-2-C33	$1106091 \pm 0.242 \pm 0.22$	15126	5
426673	CFSW.110-6-1NO+3NC-F-B-2	426673-C33	CFSW.110-6-1NO+3NC-F-B-2-C33	$1106091 \pm 0.242 \pm 0.225$	15126.5	528
426675	CFSW.110-6-1NO+3NC-F-A-5	426675-C33	CFSW. $110-6-1$ NO+3NC-F-A-5-C33	$1106091 \pm 0.242 \pm 0.225$	15126.5	5475
426676	CFSW.110-6-1NO+3NC-F-C-5	26676-C33	CFSW.110-6-1NO+3NC-F-C-5-C33	$106091 \pm 0.242 \pm 0.225$	15126.5	
426677	CFSW.110-6-1NO+3NC-F-B-5	426677-C33	CFSW.110-6-1NO+3NC-F-B-5-C33	$1106091 \pm 0.242 \pm 0.225$	15126.5	
426679	CFSW.110-6-1NO+3NC-FC-B	426679-C33	CFSW.110-6-1NO+3NC-FC-B-C33	$1106091 \pm 0.242 \pm 0.225$	15126	47

\# Suggested tightening torque for assembly screws.

	AXIAL STRESS	RADIAL STRESS	90° ANGLED STRESS
Resistance tests			
Description	Max limit static load $\mathrm{Sa}[\mathrm{N}]$	$\begin{gathered} \text { Max limit static load } \\ \operatorname{Sr}[\mathrm{N}] \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Max limit static load } \\ \text { S90 [N] } \\ \hline \end{gathered}$
CFSW. 110	2100	2800	1300

For CFSW. hinges with built-in safety multiple switch, the reference value supplied is the max limit static load (Sa, Sr, S90), since these hinges can be used as safety devices. Above this value, the material may break, thus prejudicing the hinge functionality. Obviously a suitable factor, according to the importance and safety level of the specific application, must be applied to this value. The load values shown in the tables of the different hinges are the result of tests carried out in our laboratories under controlled temperature and humidity ($23^{\circ} \mathrm{C}-50 \%$ R.H. $)$, under given conditions of use and for a limited period of time.

Example of suitability check

$\mathrm{P}=$ weight of the door [N]
$P_{1}=$ additional extra load [N]
W = width of the door
$D=$ distance [metres] between the centre of gravity of the
door and the hinge axis. In normal conditions $D=W / 2$
$D_{1}=$ distance [metres] between the hinge axis and the additional extra load application point
N = number of hinges
$k=$ safety factor
$d_{T}=$ sum of the distances (metres) of all the hinges from the hinge of reference $\left(d_{T}=d_{1}+d_{2}+\ldots+d n\right)$. In case of only two hinge assembled, d_{T} is simply the distance between them.

Hinged door on a vertical axis

Conditions to be checked in order to ensure a correct functioning with two or more hinges.

$$
\begin{aligned}
& \frac{(P+P 1)}{N} \cdot k<S a \\
& \frac{[(P \cdot D)+(P 1 \cdot D 1)]}{d_{T}} \cdot k<S r \\
& \frac{[(P \cdot D)+(P 1 \cdot D 1)]}{d_{T}} \cdot k<S 90
\end{aligned}
$$

The technical designer must use suitable safety factors (k) according to the type of application and function of the CFSW. hinge.

Example hinge CFSW. 110-6-2NO+2NC-C-A

$$
\begin{array}{lll}
\mathrm{P}=294 \mathrm{~N}(30 \mathrm{Kg}) & \mathrm{D}=0,4 \mathrm{~m} & \mathrm{~N}=3 \\
\mathrm{~d}_{\mathrm{T}}=1,5 \mathrm{~m} & \mathrm{~d}_{2}=1 \mathrm{~m} & \mathrm{~d}_{1}=0,5 \mathrm{~m} \\
\mathrm{P}_{1}=196 \mathrm{~N}(20 \mathrm{Kg}) & \mathrm{D}_{1}=1,2 \mathrm{~m} &
\end{array}
$$

$$
\frac{490}{3}=163 \cdot \mathrm{k}<2100
$$

$$
\frac{[(294 \cdot 0,4)+(196 \cdot 1,2)]}{1,5}=235,2 \cdot \mathrm{k}<2800
$$

$$
\frac{[(294 \cdot 0,4)+(196 \cdot 1,2)]}{1,5}=235,2 \cdot \mathrm{k}<1300
$$

The examples shown here must be considered only as explanatory, since they are not applicable to all the different applications, conditions of use, ways of assembly which can actually take place. In practice, the technical designer, after applying a suitable safety factor (k) must also test the chosen product to check its suitability. For further general technical information, refer to the guidelines.

[^0]: * A cycle of operations is equivalent to one closure and one opening as required by the standard EN60947-5-1.
 ** Fit the safety plug to guarantee IP67 protection (fig.7)
 For CFSW-C..(connector) it is the customer's responsibility to check the protection class guaranteed by the connector of the cable used.

